For each α > 2 there is an Infinite Binary Word with Critical Exponent α

نویسندگان

  • James D. Currie
  • Narad Rampersad
چکیده

The critical exponent of an infinite word w is the supremum of all rational numbers α such that w contains an α-power. We resolve an open question of Krieger and Shallit by showing that for each α > 2 there is an infinite binary word with critical exponent α.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Exponents of Words over 3 Letters

For all α ≥ RT (3) (where RT (3) = 7/4 is the repetition threshold for the 3-letter alphabet), there exists an infinite word over 3 letters whose critical exponent is α.

متن کامل

On Repetition Thresholds of Caterpillars and Trees of Bounded Degree

The repetition threshold is the smallest real number α such that there exists an infinite word over a k-letter alphabet that avoids repetition of exponent strictly greater than α. This notion can be generalized to graph classes. In this paper, we completely determine the repetition thresholds for caterpillars and caterpillars of maximum degree 3. Additionally, we present bounds for the repetiti...

متن کامل

Abelian powers and repetitions in Sturmian words

Richomme, Saari and Zamboni (J. Lond. Math. Soc. 83: 79–95, 2011) proved that at every position of an infinite Sturmian word starts an abelian power of exponent k, for every positive integer k. Here, we improve on this result, studying the maximal exponent of abelian powers and abelian repetitions (an abelian repetition is the analogous of a fractional power in the abelian setting) occurring in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008